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NATIONAL ADVISORY C O M M I W E  FOR AEBONAUTICS 

.RXSEBRCH hEM0RANDUM 

COMPARISON OF EXPERIMENTAL WIT€€ THEORETICAL TOTAL-PRESSURE 

LOSS IN PARALLEL-WALIED TURBOJET COMBUSTORS 

4 e By Ralph T. Dittrich 

An experimental  investigation  of  combustor  total-pressure l o s s  was 
undertaken  to  confirm  previous  theoretical  analyses.  The  investigation 
considered  the  effects  of  geometric  and  flow  variables  and of heat  addi- 
tion on the  total-pressure-loss  coefficient  of a parallel-wall  turbojet 
combus  tor. 

3 H The  results  indicate  that a reasonable  estimate  of  cold-flow  total- 
' pressure-loss  coefficient may be  obtained  from  the  theoretical  analyses. 

Calculated  values of total-pressure loss due to heat  addition  alone  show 
good  agreement  with  experimental data. if  there is no  flame  ejection  from 
the  liner  at  the  upstream  air-entry  holes.  When  flame  ejection  occurs, 
the  total-presswe loss is abnormally h i g h  because  of  recirculation of, 
and  heat  addition  to,  the  gases in the annular passage.  Factors  that 
appear  to  cause  flame  ejection  are (I) relatively  large  liner  total  hole 
area, (2) a large  outlet-to-inlet  temperature  ratio,  and (3) a low ref- 
erence  Mach  number. 

b 
Y 

INTRODUCTION 

Total-pressure  losses of the  gases  flowing  through an aircraft jet- 
engine  combustor  result  mainly  from  sudaen  expansions or contractions in 
flow  area,  jet  mixing,  wall  frict-lan,  and  the  addition  of  heat to the 
gases.  While  some presswe lOS6 is unavoidable  and  some is  utilized to 
obtain  efficient  combustion,  these  losses  reduce  engine  thrust and the 
flight  range  of  the  aircraft  (ref 8 .  1 and 2) and,  hence,  must  be 
minimized. 

A convenient  method  for  predicting  total-pressure loss would  facil- 
itate  the  design of aerodynamically  efficient  turbojet  combustors. 
Methods  for  the  rapid  calculation  of  pressure  losses  due  to  heat  addi- 
tion  alone  are  presented in references 3 to 7. The  calculation  of  com- 
bustor  over-all  total-pressure loss is normally a complex  process. 
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Reference 8 presents a simplified  method,  developed  from a theoretical 
analysis of combustor  aerodynasllcs,  for  calculating  pressure  losses. . . .  
This reference  also  preaents  generalized  curvea  showing  the  variation In 
total-pressure loss  w i t h  combustor-geometry and flow conditions.  The 
present  investigation  provides  experimental  data indicating the  validity 
of' the  theoretical data presented in reference 8. 

Experimental  pressure-lose data were  obta.ined  with..a  parallel- 
walled,  tubular  research  combustor  for  ranges  of flow conditions and Ip 

geometric  variables similar to  those  considered in reference 8. In both z 
investigations  the  major  geometric  variables  studied  were  the l iner total 
open  hole  area and the  cross-sectional  area of the  liner  relative  to that 
of the  outer shell. Pressure-loss  data  obtained  without heataddition in 
the  liner  are  comgared  with  the  calculated  values of reference 8. Limited 
data  were  also  obtained with heat addition i n  the  liner.  The  pressure 
losses due to the  heat  addition alone are compared with values calculated . 

by the  methods of both  references 3 and 8. 

ro 

SYMBOLS 
* '  

t-otal  liner  open  hole area, sq ft . 

cross-sectional  area of liner, sq ft 

outer-shell  cross-sectional  area;  reference  area, sq ft 

Mach  number  based on inlet condition +d reference  area . "  

l o c a l  total  pressure i n  ~hnn~lus, lb/sq ft 

combustor-inlet t o t a l  pressure,  lb/sq ft 

total-pressure-loss  coefficient 

l oca l  static  pressure i n  annulus, lb/sq ft 

l oca l  static  pressure in liner,  lb/sq ft 

dynamic pressure  based on outer-shell  cross-sectional  area and 
inlet  conditions,  lb/sq f t  

Reynolds number  based  on  outer-shell  cross-sectional  area and 
inlet  conditions 

combustor-Mlet total  temperature, OR 
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TO combustor-outlet  total  temperature, ?R 

wa airflow  rate,  lb/sec 

APPARATUS AND PROCEDURE 

Combustor 

3 

A schematic diagram of the  tubular  research  combustor  installation 
is  presented  in  figure 1. The  combustor was connected  to  the  laboratory 
pressurized  air and exhaust  systems. The airflow  rate and pressure  were 
regulated  by  remote-controlled  valves  located  upstream  of  the plenum 
chamber  and  downstream of the  combustor t e s t  section.  Airflow was metered 
by  calibrated flow nozzles having throat  diameters of either 3.746 or 
4.543 inches.  These  nozzles  were  located downstream of the  plenum  chamber 
(fig. 1). 

Details of the  research  combustor  are shown in figure 2. The liner 
consisted  of a 6.0-inch-outside-diameter, 0.031-inch-wall  metal  tube hav- 
fng eight  uniformly  distributed  rings of 1.375-inch-diameter  holes. In 
each  ring six holes  were  equally  spaced around the  circumference. The 
liner t o t a l  open  hole  area was varied  by  covering  various  rings of holes 
sJith strips of 0.008-inch-thick m e t a l  and  sealing  them w i t h  masking hpe. 
The  liner  dome  had no air-entry  holes and was streamlined to provide a 
uniform  velocity  distribution at the annulus entrance.  Three afferent 
diameter  outer  shells  were  used.  The  dimensions  of  the  various  liner 
and  outer-shell  combinations  tested are listed in the following table: 

t 

Liner 

in .  
liam. , Liner cross- 

sectfonal 
area, AL, 

sq ft 

5.005  0.1967 

Shell 

holes area,  Ar, 
liner  sectional in. 
of cross- dim., 
Rings AJA, Shell 

sq ft open 

8.48 

2 
3 
6 
8 0.502 0.392 

7.74 0.327  0.602 8 
6 
3 
2 

8.48 

2 
3 
6 
8 0.502 0.392 

7.74 0.327  0.602 8 
6 
3 
2 

7.14 I 0.278  10.708 1 i 

Total 
liner 
hole 
area, 
*h,  t.r 

2 *h t 
A, against 

Mr, 

s i f t1  I I 
0.495 
.371 
.I86 
.124 

1.26  4(a) 

0.495 
.371 
.186 
.124 

1.51 

(h) .38 

(f) 1.14 
4(e) 

-57 (g) 

0.495 

( 2 )  .45 .124 
(k) .67 .186 
(j) 1.34 .371 
4(i) 1.78 
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For tests  with  heat  addition in the  liner, a fuel nozzle  supplying 
gaseous  propane  fuel and an ignition plug were  installed in the  liner. " 

Instrumentation " 

Total-preseure  surveys  upstream and downstream  of  the  combustor 
(stations 1 and 3, fig. 2) were  made  with  rakes  having  ten  total-pressure 
tubes  each,  the  tubes  being  located  along  centerlines of five  equal 
areas.  Total-pressure  surveys were also made a t  the amulus entrance s 
(station 2, fig. 2) by  means  of a probe having a 0.020-inch-diameter 
tip. This probe was moved radially across  the annular passage. 

co 
~. 

Combustor-inlet  air  temperature was measured  by a single  thermo- 
couple  located  between  the  airflow  nozzle and the  combustor.  For  tests 
with  heat  addition in the canbutor, 28 thermocouples  were  installed lm- 
mediately damstream of pressure-measuring  station 3 (fig. 2). These 
thermocouples  were  equally  spaced  along  centerlines of four equal circu- 
lar areas.  By means of a suitable switching arrangement,  either  indi- 
vidual, measuements or an average of the 28 thermocouples could be 
obtained. 

Procedure 

P 

Pressure-loss data were obtained with all configurations at cold- 
f l o w  conditions. A range  of  reference  Mach  number was investigated  by 
varying the  inlet  pressure in the range fram 850 to 5600 pounds  per 
square  foot  absolute  while  maintaining  the  airflow  rate  constant  at a 
nominalvalbe of 4 pounds  per  second,  With some configurations addl- 
t i o n a l  data were  obtained  at  airflow  rates of 2 and 6 pounds  per  second 
in  order  to  vary  Reynolds  number.  Pressure loss  due to heat  addition 
was studied with a configuration  that was selected from the  generalized 
curves of reference 8 for  low-pressure-loss  characteristics.  The  inlet 
air  temperature was approximately 75' F for all tests. 

The  pressure-loss  coefficient AP/q, is defined a8 the  ratio of 
the  difference in average  total  pressures  between  stations 2 and 3 to 
the  reference  dynamic  pressure.  The  inlet  total  pressures,  however, 
were  measured  at  station 1 and  corrected  to  station 2 because the average 
total-pressure was more readily determined at the  large  cross-sectional 
area at station 1 (numerical  average)  than at the small annular &rea of 
station 2 (weighted  average).  The loss in average  total  pressure  across 
stations 1 and 2 was measured for the  various  outer  shells  (fig. 31, and 
the average  total  pressure at stat ion 2 was obtained by correcting  sta- 
tion 1 measurements by this  pressure loss (fig. 3). The  reference dy- 
namic  pressure  qr was calculated on the  basis  of  the  air  density  at 
station 2 and the  cross-sectional  area of the outer  shell. 

.I 
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RESULTS AND DISCUSSION 

' C o l d - F l o w  Pressure Loss 

5 

I 

I 
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Experimental  data showing the  var ia t ion of total-pressure-loss co- 
e f f i c i en t  aP/qr  wfth reference Mach number % for   the  var ious con- 
figurations  investigated are compared i n   f i g u r e  4 with  theoretical  
pressure-loss data for  l ike  configurations.  The theore t ica l  data cal- 
culated  both  with and  without annulus wall f r i c t i o n  were obtained from 
figures 9 and 11 of reference 8. The calculations  with  annulus wall 
f r i c t ion   ( r e f .  8) assumed a f r i c t ion   f ac to r  of 0.005 and an outer-shell  
length-to-diameter  ratio of 4. The configurations  used in the  present 
investigation have outer-shell  length-to-diameter  ratios  ranging from 
4.4 t o  5.2. 

The e f fec t  of M r  on LIP/* w&s least f o r  a configuration having 
a cross-sectional area r a t i o  of 0.502 and a l i n e r   t o t a l   h o l e  
area r a t i o  Ah,JAr of 1.26 t r ig .   4 (a)  1. The effect of % increases 
with  both an increase i n  Ar/Ar ( f ig .  4( j ) )  o r  a decrease in %,t/Ar 

( f ig .  4 ( d ) ) .  The reference Mach  number  of conventional  turbojet com- 
bustors i s  generally  within  the  range from 0.025 t o  0.08. Figure 4 
shows that within this range the effect of Mr on the APfq, is  small 
f o r  a l l  configuratAons  investigated. 

A comparison of the  theoretical  with  the  experimental  values of 
AP/qr ( f ig .  4)  shows that the  calculated  values  including  annulus wall 
f r i c t i o n  are within 1 7  percent of but are generally  higher  than  the ex- 
perimental data. Better agrement  with  experimental data f o r  A d &  
of 0.502 and 0.602 i s  shown by calculated  values that neglect  annulus 
wall   fr iction. For some combustor configurations  the  calculated bp/qr 
curves were not  extended to  the  higher  values of 4 because  local h c h  
nuibers approached unity. 

Several  configurations were tested at air f low  ra tes  of 2, 4, and 6 
pounds per  second ( f igs .  4(a), (e) ,  and ( i ) ) .  Within  experimental  error, 
the  data  fa l l  on single  curves,  indicating  that,  for  the  ranges of op- 
erating  conditions  investigated,  reference Reynolds number  had a negli- 
gible ef fec t  on AP/qr. 

The e f fec t  of l iner   hole   dis t r ibut ion on  c9/qr f o r  a n  
of 0.38 i s  shown in   f igure  d(h) .  A l i ne r  having all air-entry  holes   a t  
the downstream end  had a aP/qr  approximately 10 percent  greater  than 
tha t  of a liner having a l l  entry  holes a t  the upstream end or one having 
an  air-entry  hole  area  divided between  upstream and downstream ends. 
Hence, l iner   ho le   d i s t r ibu t ion  has a minor effect  on total-pressure-loss 
coefficient.  
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The  effect  of  the  geometric  variables  on  the  pressure-loss  coeffi- I 

cient  is &own in figure 5, wherein  the  data of figure 4 are  cross- c 

plotted for values  of Mr of 0.05 and 0.15. The total-pressure-loss 
coefficient- AP/s, apprmches a minimum  value  for  an %/Ar of 0.502 

as  the Ah, t/% exceeds a value of 1.0. m e  m/qr increases  rapidly 
with an increase in above approximately 0.602 or a decrease i n  
Ah,t/AE  below 1.0. A comparison of figures 5(a) and (b)  shows that an 
increase in % increases  the  effect  of gemetric variables on the 
total-pressure-loss  coefficient. Similar trends  are  shown  by the theo- 
retical  pressure-loss  curves in figure 5. 

Pressure Loss with  Heat-Addition 

The  hot-flow  pressure-loss  data  presented in ffgure 6 were obtained 
with a configuration  having a cross-sectional  area  ratio AL/A~ of 
0.602 and a liner  hole area ratio Ah t/+ of 1. lk- Although  cold-f low 
tests  showed  that minimum total-pressure loss was obtained with a con- 
figuration  having an Ad4 of 0.502, the  analysis  of  reference 8 indi- 
cates  that  the  value  of givhg a minimum . .  total-pressure loss 
increases from 0.502 for  cold f low t o  0.602 f o r  a combustor  outlet-to- 
inlet tmperathre ratio  To/Ti  of 4, The  experimental. da ta  (fig. 6) 
show that with t h i s  configuration  the  total-pressure-loss  coefficient 
at To/Ti of 3 is mare than  twice that a t  cold  flow (.To/Ti = 1) cond3" 
tions. Also, an increase in temperature r a t i o  To/Ti increases  the 
effect of on u/qr. 

, 

Similarly to cold-flow  tests,  variations in reference  Reynolds num- 
' ber  Rer  for  the  ranges  indicated in figure 6 had no apparent  effect on 
AP/qr. Reynolds number  calculations  were  based  on  inlet  conditions and 
the  reTerence  area  Are 

. .  .. 

Theoretical AP/s, curves f o r  the same configuration  are  included 
in figure 6. In  the ,% range from zero  to 0.05, the  short dashed lines 
represent  values  of A€'/% calculated  for  incompressible  flow  with 
To/Ti of 2 and 3 (ref. 8). In  this M, range,  figure  4(f) s h o w s  that.. 
the  effect of compressibility on N/q, with  this  configuration 1s small. 
For &-- greater  than 0.06 the.theoretica1  curves  were  calculated  by the 
method opreference 3, which determines on ly  the  increase in total-pressure 
loss (over  cold-flow  conditions)  resulting  from  heat  addition. 

. . . . . . . . . - 
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extrapolation of the  experimental AP/qr curves f o r  To/Ti of 
t o  a $ of less than 0.05 would indicate  that the  values of 

AP/q, predicted by reference 8' are somewhat lower than  experimental 
values. For % greater than 0.05, M/qr  values  calculated by the 
method  of reference 3 show  good agreement 'with most of the experimental 
data. 

In  preliminary tests, abnormally high AP/qr values and flame  in- 
s t a b i l i t y  a t  increas ing   fue l -a i r   mt ios  were experienced  with a config- 
uration having an AL/Ar of 0.602 and an Ah t/pi. of 1.51. During 
these tests the combustion process was rough and  noisy,  and  flame ejec- 
t ion  from the upstream liner  air-entry  holes  into  the  annular  passage 
was observed.  Subsequent reduction  in the value of Ah,t/& from 1.51 
t o  1.14 resul ted in reasonable AP/+ values f o r  tests a t  % greater 
than 0.06 but s t i l l  abnormally high AP/cl, values a t  M r  less than 
0.06 ( f ig .  6 ) .  Observed fac tors   resu l t ing   in  flame ejection  and ab- 
normally  high  pressure  losses were (1) high values of To/Ti, (2) high 
Values of Ah,t/&, and (3) low Values of Mr. 

J 

A better  understanding of the  causes  for  the  abnormally high pres- 
sure losses may be gained from a study of the   e f fec t  of  these  factors 
on the  static-pressure drop across   the  l iner  upstream air-entry  holes. 
For this   s tudy a theoret ical   preseure  dis t r ibut ion of a combustor l i n e r  
and  annulus ( A d &  = 0.60, = 1.09 and % = 0.09) from refer-  
ence 8 i s  reproduced in  figure 7. The pressure  trends shown i n   f i g u r e  
7 have  been  confirmed  by  unpublished  experimental data. The re l a t ive  
magnitude of the static-pressure drop across a l i n e r  wall opening, a t  
a given  station along the combustor length, is indicated by the d i f fe r -  
ence between curves of pA/P1 and pL/PI. Curves of pL/P1 are pre- 

sented  for  both  cold-f l o w  conditions (To/Ti = 1) and for  temperature 
r a t i o  T ~ / T ~  of 3. mom figure 7 it i s  evident that an increase tn 
temperature r a t i o  To/Ti decreases the static-pressure drop  across  the 
l i ne r  upstream air-entry  holes.  Regarding the second factor ,  Ah,t/&, 
reference 8 shows that,  although there i s  only a small change i n  AP fqr 
with  increased Ah, t/A, (above 1.0) , there  i s  an appreciable  reduction 
i n  this static-pressure drop. As to   the  third  factor ,   calculat ions show 
that   reduct ion  in  4 below the  value of 0.09 for  figure 7 also results 
i n  reduced static-pressure drop. Thus, a conibination of large T0/Ti, 
large %,t/%, and low 4 might not  only  tend t o  reduce  the air entered 
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through  the  upstream  holes  to  zero  butrmay  cause  reverse  flow  and  hence 
flame  ejection.  Pressure  fluctuations  caused  by  unsteady  combustion 
would  also  be  expected t o  promote  flame  ejection.  The  abnormally  high 
pressure  loss  aP/qr  associated  with  the  observed  flame  ejection  appar- 
ently  results  from  recirculation  of, and heat  addition to, the  gases  in 
the  annular  passage. 

Significance of Results  to  Combustor  Design 

The results of a previous  theoretical analysis and of the present 
investigation  show  the  effects of a number of geometric  and f low vari- 
ables on the  total-pressure-loas  coefffcient of a parallel-wall  turbo- 
jet cmbustor having  air-entry  holes in the  liner wall only. The studies 
indicate  optimum  values of design  parameters  for  minimum  pressure-loss 
characteristics.  The  final  design of a canbustor assembly,  however,  is 
usually a compromise  between  aerodynamic  efficiency  and  combustion 
perfomnce. 

The  results of previous  theoretical  analyses,  expef-imental cmbustor 
performance  studies, and the  present  investigation  suggest that the 
quantity  Ar  should  be  large  from  considerations of.both canbustion  and 
aerodynamic  efficiency.  Increases  in A, result in decreases in q, 
which,  in  turn,  result  in  higher  combustion  efficiencies and lower  values 
of  both the total-pressure-lose  coefficient AP/q, and  the  percent 
total-pressure l o s s  -AI?/P1. The liner  cross-sectional  area AL should 
a lso  be  large in  order to minimize  the  flame-quenching  effect of the 
liner walls (ref. 9). From pressure-loss  considerations,  the optimum 
r a t i o  of these two quantities (AL/&) should equal  approxbmtely 0 . 6 .  
Available  design  data for conventional  combdstors  indicate  AL/Ar  ratios 
generally in the range from 0.55 to 0.60. 

The  selection of an .optimum  value of Ah, t/% W ~ U  81SO generally 
be a compromise  between  pressure-loss  considerations  and  combustion  per- 
formance.  Theoretical  analyses  and  experimental  cold-flow data (fi 
show that  minimum  preseure  losses are obtained with values of Ah,t )% 5,  
greater than 1.0. Experimental  hot-flow data (fig. 6) obtained  with 

loss  corresponded-to  calculated values, but at low the LP/qr was 
abnormally  high  because of flame ejection frm the  upstream end of the 
combustion  zone. Also, the  =ximum  temperature  ratio  attainable  was 
less  than 4.  While a decrease in Ah, would probably  have  re- 
sulted  in  Fmproved  Combustion  performance  and  stability,  the  preesure- 
loss coefficient AP/qr would have increased  as  indicated  in  figure 5 .  

of 1.14 show that  at high reference  Mach  numbers  the  pressure. 
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4 
(D 

. 

-, 



NACA RM E56117 - 9 

4 
H 
u 

Combustion performance m y  also  be improved by varying the   dfs t r ibut ion 
of a i r  admission  hole area along  the  Uner;   this would have only a mall 
effec t  on AP/* ( f ig .  4( h) 1. The problems of supplying  sufficient air  
to   the  primary zone t o  permit  opemtion a t  high temperature  ratios,  and 
of avoiding flame eject ian frm the primary zone when using  large  values 
of Ah, t/Ar might be  a l leviated in one of two ways: (1) the  use of 
scoops or  louvres in the  annular air passage  surrounding  the combustion 
zone, or  (2)  the use of "snouts"  or  "spli t ter   plates" i n  the  diffuser  
section  in  order  to  supply a l l  air required  for   the combustion process 
from regions of re la t ively  high static pressure. 

CONCLUSIONS 

Ekperimental  and theoretical   total-pressure  losses of a turbojet-  
engine c d u s t o r  were compared. Calculated  values of cold-flow to t a l -  
pressure-loss  coefficient that include  annulus wall f r i c t i o n  w e r e  gen- 
erally higher than (but  within 17  percent of) the  experimental  values. 
Better agreement with experfmental data was shown by calculated  values 
that  neglected  annulus wall f r i c t ion .  The comparison indicates that a 
reasonable  estimate of cold-flow  total-pressure-loss  coefficient may be 
obtained from the generalized  curves o r  from the method of calculation 
presented i n  reference 8. Calculated  values of total-pressure-loss 
coefficLent due t o  heat addition  alone show good agreement with the ex- 
perimental data if  there is  no flame eject ion fram the   l i ne r  a t  the up- 
stream  air-entry  holes. With flame ejection  the  total-pressure-loss 
coefficient was abnormally high because of recirculat ion of, and  heat 
addition  to,  the gases in the annular passage. Observed fac tors  caus- 
ing flame ejection were (I) re lat ively  large  l iner   total   hole   area,  (2) 
a large  outlet-to-inlet  temperature ratio, and (3) a low reference EiIach 
nude r .  

Leuis Flight  Propulsion  hboratory 
National  Advisory Committee f o r  Aeronautics 

Cleveland, Ohio, September  17, 1956 
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